Notes

Synthesis and Properties of Trimethyl(trifluorosilyl)stannane[†]

John J. D'Errico and Kenneth G. Sharp*

Electronics Research, Dow Corning Corp., Midland, Michigan 48686, U.S.A.

Trimethyltin hydride reacts with SiF₃SiF₃ or SiF₃SiF₂H to give the new compound SnMe₃(SiF₃) in 75---80% yield. No reaction was observed between SnMe₃H and SiF₃SiH₃. Hydrogen-deuterium exchange was observed between tin and silicon during the course of deuterium-labelling experiments. Dimethylstannylene (SnMe₂) was implicated as an intermediate by trapping experiments in the thermolysis of SnMe₃(SiF₃).

Alkyltin hydrides have demonstrated selective, stepwise, reducing properties toward a variety of halogenosilanes. Mixed halogeno-silanes and -disilanes such as SiF_2X_2 and $SiF_3SiHX_2^{-1}$ (X = Br or Cl) are preferentially attacked at the heavier halogen and converted into the corresponding fluorosilanes in nearly quantitative yield. This behaviour is in contrast to conventional reducing agents such as LiAlH₄ which reduce Si-X, Si-F, and often Si-Si bonds as well.

This report describes the interaction of alkyltin hydrides with fluorodisilanes in the absence of Si-X (X = Br or Cl) bonds. Except for SiF₃SiH₃, these reactions are characterized by Si-Si bond cleavage and the formation of a new compound containing a Si-Sn bond.

Results and Discussion

Trimethyltin hydride reacts with SiF_3SiF_3 and SiF_3SiF_2H as shown in equation (1). The major product of the reaction,

$$\begin{array}{l} \operatorname{SiF}_{3}\operatorname{SiF}_{3} \\ \operatorname{or} + \operatorname{SnMe}_{3}\operatorname{H} \xrightarrow{1.5 \text{ h}} \operatorname{SnMe}_{3}(\operatorname{SiF}_{3}) + \\ \operatorname{SiF}_{3}\operatorname{SiF}_{2}\operatorname{H} \\ \end{array} \xrightarrow{\operatorname{SnMe}_{3}(\operatorname{SiH}_{3}) + \operatorname{SiF}_{x}\operatorname{H}_{4-x}} (1) \\ (x = 2 - 4) \end{array}$$

SnMe₃(SiF₃), is obtained in 75–80% yield. Although there are several examples of compounds containing Si–Sn bonds,² this is the first example of a stable trihalogenosilyl-substituted derivative.

The compound $SnMe_3H$ did not react with SiF_3SiH_3 , even after the mixture was warmed to 75—80 °C for 1.5 h.

There are several possible mechanisms for the formation of $SnMe_3(SiF_3)$. One possibility involves the free-radical attack of Me_3Sn^{\bullet} or H^{\bullet} on the Si–Si bond. The reaction between SiF_3SiF_2H and $SnMe_3H$ was repeated in the presence of $CF_2=CF_2$, an efficient scavenger of trialkyltin radicals.³ Neither the rate of the reaction nor the product distribution was affected by $CF_2=CF_2$, indicating that a free-radical mechanism is not operative.

Deuterium-labelling experiments were performed [equation (2)] in the hope of elucidating mechanistic pathways. However,

$$SiF_{3}SiF_{2}H + SnMe_{3}D \longrightarrow SnMe_{3}(SiF_{3})$$
$$+ SiF_{4} + SiF_{3}H + SiF_{3}D + SiF_{3}SiH_{x}D_{3-x} \quad (2)$$

† Non-S.I. unit employed: Torr \approx 133 Pa.

the results were compromised by Sn-D/Si-H exchange. Independent experiments demonstrated that Sn-D/Si-H exchange was slow with SiF_3H , but much faster with SiF_3SiH_3 ; this may reflect the increase in Si-H bond strength observed with increasing fluoro substitution.⁴

The formation of SiF_3SiH_3 from the reaction of SiF_3SiF_2H and $SnMe_3H$ may result from Si-F reduction as well as F/H redistribution, since SiF_3SiF_3 was observed as a product in the early stages of the reaction. Intermediate fluorosilylstannanes such as $SnMe_3(SiF_2H)$ were not observed during the reaction.

Halogeno-substituted distannanes typically decompose at less than 150 °C.^{5,6} In contrast, there was apparent decomposition of SnMe₃(SiF₃) after 40 min at 250 °C. A powder [presumably (SnMe₂)_x] formed after 40 min at 330 °C [equation (3)]. The sole volatile product detected was SiMeF₃.

$$\operatorname{SnMe}_3(\operatorname{SiF}_3) \xrightarrow{330 \, ^\circ \mathrm{C}}_{40 \, \mathrm{min}} (\operatorname{SnMe}_2)_x + \operatorname{SiMeF}_3$$
 (3)

Evidence for the intermediacy of dimethylstannylene was obtained when the thermolysis was performed in the presence of MeBr [equation (4)]; SnBrMe₃ was isolated and identified by i.r. and mass spectroscopy.

$$\operatorname{SnMe}_{3}(\operatorname{SiF}_{3}) \xrightarrow{330 \, ^{\circ}\mathrm{C}} \operatorname{SiMeF}_{3} + \operatorname{SnMe}_{2} \xrightarrow{\operatorname{MeBr}} \operatorname{SnBrMe}_{3}$$
(4)

There was no evidence for the formation of SiBrF₃, suggesting that the reaction does not proceed via a free-radical mechanism. The methyl-bridged transition state postulated for the decomposition of distannanes⁵ and disilanes⁷ seems reasonable for the decomposition of $SnMe_3(SiF_3)$ [structure (I)].

Essentially, no reaction was observed between $SnMe_3(SiF_3)$ and $SnMe_3H$, HCl, or water after several hours at room temperature (a small amount of SiF_4 was observed in the latter case). The compound $SnMe_3(SiF_3)$ did react with ICl to form SiClF₃; there was no evidence for the formation of SiF_3I

 $\{SnMe_3I \text{ was not isolated}, [equation (5)]\}$. Similar results were reported by Shaw and Allred ⁸ for SnMe₃(SiMe₃).

$$SnMe_3(SiF_3) + ICI \longrightarrow SiClF_3 + SnMe_3I$$
 (5)

Several other reactions involving $SnMe_3H$ and various silicon compounds $[Si_2Cl_6O, Si_2Me_6, Si_2Me_6(NH)]$ were attempted. In each case, no reaction was observed after warming the mixture to 85 °C for several hours. This lack of reactivity may reflect the decreased acidity of these compounds as compared to fluoro-substituted disilanes.

Conclusions

The reaction of SiF₃SiF₃ or SiF₃SiF₂H with SnMe₃H resulted in the formation of the new compound SnMe₃(SiF₃) in 75— 80% yield. No reaction was observed between SiF₃SiH₃ and SnMe₃H. The use of a free-radical trapping agent indicated that these reactions did not proceed *via* a free-radical mechanism.

During the course of the deuterium-labelling experiments, H/D exchange was observed between silicon and tin (SnMe₃D). The exchange was fastest with SiF₃SiH₃, with little exchange observed for SiF₃H. This behaviour is consistent with increasing Si-H bond strength with increasing fluorine substitution on silicon.

The compound $SnMe_3(SiF_3)$ decomposes at 330 °C to form $(SnMe_2)_x$ and $SiMeF_3$. When the thermolysis was carried out in the presence of MeBr, $SnBrMe_3$ was isolated, thus supplying evidence for the intermediacy of $SnMe_2$.

The Si-Sn bond in $SnMe_3(SiF_3)$ showed surprisingly little reactivity with HCl, water, and $SnMe_3H$; ICl did react with $SnMe_3(SiF_3)$ to form $SiClF_3$ (and presumably $SnMe_3I$).

Experimental

Materials and Manipulations.—The details regarding the preparation of fluorodisilanes ^{1,7} and organotin hydrides ⁹ are presented elsewhere. All other materials were obtained from commercial sources. All chemical manipulations were conducted in the absence of air and moisture using a recirculating dry-box (nitrogen atmosphere) and a grease-free glass high-vacuum line (background pressure $< 10^{-4}$ Torr). All reactions were performed on a high-vacuum line in the absence of solvent.

Spectral Measurements.—Fluorine-19 n.m.r. spectra were obtained on a Varian XL-200 spectrometer operating at 188 MHz, ¹H n.m.r. spectra at 90 MHz on a Varian EM-390 spectrometer. The progress of the reactions was monitored by i.r. spectroscopy using a Nicolet 5SXB Fourier-transform spectrometer (gas cell, KBr windows, resolution 2 cm⁻¹). Mass spectra were obtained using a Hewlett-Packard 5790A series mass spectrometer.

Preparation of SnMe₃(SiF₃).--(a) The compounds Si₂F₆ (or SiF₃SiF₂H) (1.0 mmol) and SnMe₃H (1.0 mmol) were condensed into a trap (100 cm³) and warmed to room temperature (liquid was present in the trap). After 1.5 h, an i.r. spectrum of the most volatile components indicated the presence of SiF₄, SiF₃H,¹⁰ SiF₃SiH₃,¹¹ and small amounts of SiF₂H₂ and unreacted SnMe₃H. The reaction mixture was passed through a trap cooled to -78 °C, at which temperature monosilanes, SiF₃SiH₃, and SnMe₃H are volatile. The material trapped at -78 °C was then passed through a trap cooled to -46 °C (cyclohexanone). The material trapped at this temperature was shown to be SnMe₃(SiH₃)¹² (5% yield). I.r. (cm⁻¹): 2 985w, 2 924w, 2 141s, 953w, 862s, 770m, and 525m. $\delta_{\rm H}$ (solvent C₇D₈, standard SiMe₄): 3.38 (3 H, s, SiH₃) and 0.14 (9 H, s, SnMe₃). The material which passed -46 °C is a liquid at room temperature. The spectroscopic data which follow allow characterization of this compound as SnMe₃(SiF₃); yield 0.19 g (77%, based on fluorodisilanes) (Found: C, 14.4; H, 3.7. C₃H₉F₃SiSn requires C, 14.5; H, 3.6%). I.r. (cm⁻¹): 3 057vw, 2 995w, 2 928w, 935vs, 841s, 782m, 532m, and 460s. $\delta_{\rm H}$ (solvent C₇D₈, standard SiMe₄): 0.22 [s, J(SnH) = 55.5 Hz, SnMe₃]. Note: ¹¹⁷Sn and ¹¹⁹Sn couplings could not be resolved from each other. $\delta_{\rm F}$ (solvent C₇D₈, standard CFCl₃): -107.5 [s, J(¹¹⁷SnF) = 201.5, J(¹¹⁹SnF) = 209.7, J(FSi) = 417.5 Hz, SiF₃]. Mass spectral data: *m/z* 234 (*M* - 15⁺, 42.5), 204 (4.5), 164 (46.6), 134 (100.0), 118 (48.0), 85 (12.1), 66 (4.1), and 47 (9.1%).

(b) The same results as described in (a) were obtained when the reaction between $SnMe_3H$ and SiF_3SiF_2H was conducted in the presence of $CF_2=CF_2$ (1:1:3 molar ratio).

(c) The reaction between SnMe₃D and SiF₃SiF₂H proceeded in the same fashion as described in (a). The silicon by-products consisted of SiF₄, SiF₃D,¹³ SiF₃H, and SiF₃SiH_xD_{3-x} (Si-H stretch at 2 185 cm⁻¹, Si-D stretch at 1 590 cm⁻¹). There were also absorptions due to SnMe₃H.

Si-H/Sn-D *Exchange.*—(*a*) Equimolar quantities of SiF₃H and SnMe₃D were condensed into a trap and warmed to room temperature for 1.5 h; traces of SiF₃D¹³ and SnMe₃H were observed. After 12 h at room temperature there were only slight increases in the amounts of these compounds.

(b) Equimolar quantities of SiF_3SiH_3 and $SnMe_3D$ were condensed into a trap and warmed to room temperature. After 15 min, absorptions due to $SnMe_3H$ and $SiF_3SiH_xD_{3-x}$ were apparent. The intensity of these absorptions increased over 48 h. The estimated conversion (by i.r. spectroscopy) of $SnMe_3D$ into $SnMe_3H$ during that period was 20%.

Thermolysis of $SnMe_3(SiF_3)$.—(a) The compound $SnMe_3$ -(SiF₃) (15 Torr) was condensed into a medium-wall glass tube (100 cm³), which was flame sealed, and warmed to 250 °C for 40 min. No visual evidence of decomposition was apparent. The tube was then warmed to 330 °C for 40 min. A powder was observed on the walls of the tube. The tube was opened on a vacuum line and the volatile products were collected in a trap. An i.r. spectrum of this material indicated it to be SiMeF₃.¹⁴

(b) The compound $SnMe_3(SiF_3)$ and MeBr (1:5 molar ratio) were condensed into a medium-wall glass tube (100 cm³), which was flame sealed and warmed to 330 °C for 40 min. An i.r. spectrum of the volatile by-products indicated the presence of MeBr and SiMeF₃. There was no evidence for the formation of SiBrF₃.¹⁰ A liquid remained in the tube; i.r. and mass spectra were consistent with it being SnBrMe₃.¹⁵

Miscellaneous.—The compounds $SnMe_3(SiF_3)$ (0.5 mmol) and ICl (0.5 mmol) were allowed to react at room temperature for 10 min. An i.r. spectrum of the volatile products indicated the presence of $SiClF_3^{10}$ (0.48 mmol, 96%); there was no evidence for SiF_3I^{10} A solid, presumably $SnMe_3I$, was also present.

References

- 1 J. J. D'Errico and K. G. Sharp, Inorg. Chem., in the press.
- 2 M. J. Newlands, in 'Organotin Compounds,' ed. A. K. Sawyer, Marcel Dekker, New York, 1972.
- 3 H. C. Clark, S. G. Furnival, and J. T. Kwon, *Can. J. Chem.*, 1963, **41**, 2889.
- 4 R. Walsh, Acc. Chem. Res., 1981, 14, 246.
- 5 U. Schroer and W. P. Neumann, Angew. Chem., Int. Ed. Engl., 1975, 14, 246.
- 6 W. P. Neumann and A. Schwarz, *Angew. Chem., Int. Ed. Engl.*, 1975, 14, 812.

- 7 S. K. Bains, P. N. Noble, and R. Walsh, J. Chem. Soc., Faraday Trans. 2, 1986, 837.
- 8 C. F. Shaw and A. L. Allred, Inorg. Chem., 1971, 10, 1340.
- 9 M. L. Maddox, N. Flitcroft, and H. D. Kaesz, J. Organomet. Chem., 1965, **4**, 50.
- 10 M. Bures, C. Cerny, and J. Pavlicek, Chem. Listy, 1982, 76, 375.
- 11 D. Solan and A. B. Burg, *Inorg. Chem.*, 1972, 11, 1253.
 12 E. Amberger and E. Mulhofer, *J. Organomet. Chem.*, 1968, 12, 55.
- 13 H. Burger, S. Biedermann, and A. Ruoff, Spectrochim. Acta, Part A, 1971, **27**, 1687.
- 14 R. L. Collins and J. R. Nielsen, J. Chem. Phys., 1955, 23, 351.
- 15 E. J. Kupchik, in 'Organotin Compounds,' ed. A. K. Sawyer, Marcel Dekker, New York, 1971.

Received 14th November 1988; Paper 8/04515A